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Novel Photochemical Addition Reactions of Iminium 
Salts. Electron Transfer Initiated Additions of Olefins to 
2-Phenyl-l-pyrrolinium Perchlorate 

SiV: 

We recently described a novel photocyclization reaction 
involving the conversion of /V-allyliminium salts to pyrroli­
dines.1 In order to gain more information about the mecha­
nistic details of this process and to probe its generality, we have 
initiated a more broadly targeted study of the photochemical 
behavior of iminium salt-olefin systems. We report here the 
results of our preliminary efforts using a simple iminium salt, 
2-phenyl-l-pyrrolinium perchlorate (1), and a series of olefins 
of varying electron-donating ability. 

Irradiations2 of methanolic solutions of 1 (14 mM) con­
taining isobutylene, cyclohexene, methyl /3,j3-dimethylacrylate, 
or 1,3-butadiene (1 M) gave after neutralization and chro­
matographic separation the pyrrolidine ethers and olefins 
shown in Chart I. Triplet-sensitized irradiations of 1 in the 
presence of isobutylene using benzophenone, acetone, or 
xanthone failed to promote formation of the ether 2. Triplet 
energy transfer from Pl^CO to 1 is occurring under these 
conditions since 1 quenches both photoreduction and oxe-
tane-forming processes. Structural assignments4 to the pho-
toproducts were made using characteristic spectroscopic 
properties5 and, in selected cases, by independent synthesis. 
Interestingly, pyrrolizidine l l ,4 prepared by reduction 
(UAIH4) of the thermodynamic epimer of 6, was derived 

°or<Xx ^ r CRr** 
Ph Ph ^ 
10 u 
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(50%) as a 1:1 epimeric mixture by irradiation of a methanolic 
solution of the isopentenyliminium perchlorate 10. 

Mechanisms for these interesting photoaddition reactions 
involving [2 + 2] cycloaddition of olefin to R 2 C = N + R 2 

chromophore do not appear adequate in rationalizing the ob­
served reaction regiochemistries7 nor would they account for 
the anticipated stability of the intermediate azetidinium salts.8 

Indeed, the vinylazetidine 9 is not converted to ether 7 under 
the reaction conditions or the more rigorous refluxing 
methanolic HClO4 . 

On the other hand, the structural and regiochemical features 
of these reactions appear nicely rationalized using the elec­
tron-transfer mechanisms presented in Chart II. The initial 
steps of these processes are analogous to those summoned by 
Arnold9 to explain the interesting anti-Markownikoff additions 
of nucleophiles to olefins. Accordingly, methanol attack'on the 
radical-cation fragment of the charged radical pair 12, formed 
by electron transfer from the electron-rich olefin to singlet 
iminium salt, is expected9 to lead to the more stable radical pair 
13.'° Collapse of 13 would then generate the observed amino 
ether addition products 14. Alternatively, deprotonation of 12 
followed by radical coupling leads to the olefin adducts.1' The 

Chart II 

1 + olefin 
1. hv 

on 

fused bicyclic lactams from reactions with the dimethyl ac-
rylate ester are a result of secondary lactamization of initially 
formed ether and olefin adducts. 

Studies with electron-poor olefins have provided further 
support for this mechanistic rationale. The criteria for electron 
transfer based upon respective oxidation and reduction po­
tentials and acceptor singlet energy have been outlined by 
Weller.12 Indeed, the calculated rates of electron transfer (kei) 
from the electron-rich olefinic substrates employed above to 
l s i are calculated to be near the diffusion controlled limit (~1 
X 1010 M - ' S" ' ) . u Although methyl /3,/3-dimethylacrylate138 
is expected to transfer an electron to lS l rapidly (kel ~ 7 X 109 

M - ' s_ 1) , the less substituted olefins, methyl methacrylate, 
methyl acrylate, and acrylonitrile 17a-c, should be poorer 

1 + CH2=CR1R2 

17a, R, = CH3; R2 = CO2CH3 
b, R1 = H ; R 2 = CO2CH3 
c,R, = H; R2 = CN 

®1 

C^ 
^H 

< R2 

18a-c 

^ 

V 

N — H 
R1 

R2 

19a-c 

donors (Jfcet = 8 X 102, 7 X 10"6, and 1 X 10~8 M" 1 s"1, re­
spectively).12'13 Importantly, irradiations4 of methanolic or 
acetonitrile solutions of 1 in the presence of olefins 17a-c (1 
M) do not produce pyrrolidine ether or olefin products. Instead, 
the spirocyclic amines 19a-c are generated in reasonably high 
yields (45-50%).M Structural assignments to these substances 
were made using spectroscopic data, and, for 19b-c, by X-ray 
analysis of the HClO4 salt of the syn epimer of 19c (Ri = CN; 
R2 = H), interconversion of the nitriles 19c (NaOCH3 , 
CH3OH), and independent conversions of the nitriles 19c to 
esters 19b (H2SO4 , CH 3 OH). 

Formation of the spirocyclic amines appears to involve initial 
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olefin-arene [2 + 2] cycloaddition15 followed by ring expan­
sion and deprotonation. Thus, the nature of the photoaddition 
pathways followed by 1 appears to be critically dependent on 
the electron-donating ability of the olefin in a way strongly 
suggestive of electron-transfer mechanisms for pyrrolidine 
ether and olefin formation. Thus, competition between addition 
and cycloaddition might be regulated at an olefin-iminium salt 
exciplex stage by the relative magnitudes of ket and &2+2> Also, 
it is quite likely that the intramolecular version of this new 
photochemical reaction1 observed for ./V-allyliminium salt 
systems also follows an electron-transfer mechanism. Further 
studies are underway to probe further the mechanistic details 
and synthetic potential of these reactions. 
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Stereochemistry of Free-Radical 
Substitution on the Peroxide Bond 

Sir: 

The stereochemical course of the SH2 reaction has been the 
subject of intensive theoretical interest for some 40 years.1-3 

Calculations suggest1,3 that homolytic substitution in simple 
three-atom systems occurs via a colinear geometry and scat­
tering experiments support the linear arrangement for deute­
rium-halogen exchange.4 Examples of experiments designed 
to provide stereochemical information about the SH2 reaction 
in more complicated organic systems are rare and studies have 
been limited to halogen atom substitution on cyclopropane 
carbon for the first row elements.5-7 Homolytic substitution 
on phosphorus8 and sulfur9 has been studied and inversion of 
configuration is generally observed, although the possibility 
of a metastable radical-addition intermediate may complicate 
the interpretation of these results. 

Carbon radical attack on the peroxide bond represents an 
important pathway in the autoxidation of olefins. For example, 
intramolecular carbon radical substitution (SHO on the per­
oxide bond initiates the unzipping of styrene-oxygen copoly­
mer.10 Because of the importance of this reaction in the oxi-

OJ* 
.0 

d\ 

dation of polymers and natural products such as polyunsatu­
rated lipids, we have initiated a study directed toward deter­
mining the stereochemical preference of carbon radical sub­
stitution on peroxide. We report here results of studies of the 
SHI reaction in which the orientation of the attacking radical 
with respect to the peroxide bond is systematically varied. This 
approach gives information about the stereochemical prefer­
ence of the substitution reaction and the results suggest that 
a "back-side attack" of the carbon radical on the peroxide bond 
is required. 

The /3-bromo peroxides 1-4 were prepared by reaction of 

Br 
Br 

0 - 0 0-0 

the corresponding mercuri bromides'' •'2 with molecular bro­
mine.13 Compounds 1 and 2 are formed as threo and erythro 
diastereomers and 4 consists of a mixture of cis and trans iso­
mers as prepared.! 2 These diastereomers can all be separated 
by high pressure liquid chromatography (HPLC) on ^-Porasil 
with 5% ethyl acetate-hexane. 

The bromo peroxides 1-4 were reacted with 1.0 equiv of 
tributyltin hydride in benzene at 25 0C with 2-5% tert-buly\ 
hyponitrite initiator present.14 For example, reaction of 1 
(threo or erythro) with 0.455 M tin hydride leads to a mixture 
of cyclic peroxide 5 and epoxy alcohol 6 in a 5:6 ratio of 82:18. 

Bu3SnH 0-0 

The epoxy alcohol 6 was formed as a 3:1 mixture of the trans 
and cis geometric isomers and this product distribution was 
independent of the stereochemistry (threo or erythro) of the 
starting /3-bromo peroxide. The results of analogous reactions 
of 2, 3, and 4 with tributyltin hydride led to mixtures of the 
corresponding cyclic peroxides and epoxy alcohols.15 The epoxy 
alcohol 7 derived from 2 rearranges under the conditions of 
analysis to the furan and pyran products 8 and 9. 7 was pre­
pared independently from the corresponding olefin and was 
converted into 8 and 9 by traces of acid. 
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